@keyframes rwdcur2154 {
0%,89.9% {cursor:url() 15 15, auto;}
90%,92.4% {cursor:url() 15 15, auto;}
92.5%,94.9% {cursor:url() 15 15, auto;}
95%,97.4% {cursor:url() 15 15, auto;}
97.5%,99.9% {cursor:url() 15 15, auto;}
}
div.testarea{
animation:rwdcur2154 3.3333333333333s linear infinite forwards;
}
